
The Feudal Priority Algorithm on Hidden-Surface Removal

Han-Ming Chen

Wen-Teng Wang

Department of Mechanical Engineering

National Taiwan University

n

s
n
e

is

e
th

m
ty
e
e

e

g

h
e
in
h

-

nt
er
 a
ed
s,
ter
es
he

y
y
e
st

ce
 a
nd
st-

st

ic
le

e
D
M.
 a

m
re
ge
te
d
e

ABSTRACT

Development of a real-time shaded rendering approach for
frequently changing viewpoint or view vector is very important in
the simulation of 3-D objects in Computer-Aided Design. A
new approach is proposed in this paper to meet this demand i
very efficient manner.

A pre-processing phase, in which a feudal priority tree i
established for all polygons of an object, and a post-processi
phase, in which a rendering priority list is searched for from th
feudal priority tree for a new viewpoint or view vector, are
included in our approach. The most time-consuming work
finished in the pre-processing phase which only has to b
executed once for an object, and the relatively simple task is l
to the post-processing phase, which is repeated when
viewpoint or view vector is changed.

For the pre-processing phase, a static version and a dyna
version are proposed in this paper. The one-way priori
relations of all polygons are computed in the former part of th
dynamic pre-processing in a more efficient way than that in th
static pre-processing, but the latter part of the dynamic pr
processing is still based on the static pre-processing.

A new concept of "absolute priority" is introduced to
systematically reduce the polygons in which a separating plane
to be searched for so the probability of finding the separatin
plane is much increased. This is the basis to implement anot
important concept of "separating before splitting" by which th
polygon splittings are much reduced. Hence the efficiency
the pre-processing and the post-processing phases is hig
increased.

CR Categories and Subject Descriptors: I.3 [COMPUTER
GRAPHICS]: I.3.7 [Three-Dimensional Graphics and Realism]
Hidden line/surface removal, Visible line/surface algorithms.
Additional Key Words and Phrases: The Binary Space-
Partitioning Tree Algorithm.

Taipei, Taiwan 107, R.O.C. e-mail: hmchen@ccms.ntu.edu.tw
-
the

ic
he
re-
 of
he

ic
 the
a

 a

g

e
ft
e

ic

-

is

er

ly

INTRODUCTION

In 1969, Schumacker first presented some very importa
notions on the subject of visual simulation [10]. Schumack
[10, 11, 12, 15] observed that within a cluster the face priority is
property of the topology of the cluster and can be calculat
independently of the viewpoint if the environment, i.e., object
can be divided into several adequate clusters. The clus
priority is determined by isolating clusters with separating plan
and is dependent on the location of the viewpoint relative to t
separating planes.

A subsequent development in this field was the Binar
Space-Partitioning (BSP) Tree Algorithm. It was developed b
Fuchs, Kedem, and Naylor [5, 7, 6] in 1980. The BSP tre
algorithm is based on the work of Schumacker [5, 4]. Its mo
fundamental notion is to separate the space into two subspaces by
a properly selected plane such that no polygon in the subspace on
the viewpoint side is obstructed by any polygon in the subspa
on the other side. This algorithm pushes much of its work into
pre-processing phase in which a BSP tree is computed a
established. Once the BSP tree is established, the po
processing work becomes very simple to each new viewpoint.

Newell, Newell, and Sancha [8] developed an ordering te
and a face-splitting routine in their algorithm to find the priority
list for 3-D polygons. In their algorithm, it is still necessary to
repeat the whole procedure for a new viewpoint, but its bas
ideas are very helpful for establishing the "one-way priority" tab
used in our research [1, 2].

Computer-Aided Design and Manufacturing has becom
more and more important in modern industry. To render 3-
objects on the computer screen is an important step in CAD/CA
But the efficiency of this rendering step completely relies upon
good Hidden-Surface Removal algorithm which can handle
objects in any shape at a fast speed.

One of the possible disadvantage of the BSP tree algorith
is that the output polygons in the tree would be significantly mo
than the input polygons so the number of splittings is very lar
[5]. Another weakness of this algorithm is that the appropria
partitioning hyperplane selection is quite complicated an
difficult. Therefore, we have developed a new method which w
have named "Feudal Priority Algorithm" which also includes pre
processing and post-processing phases and can compute
rendering priority of polygons in any shape. In the "dynam
pre-processing" of our approach, the number of splittings and t
number of output polygons is much fewer than those in the p
processing of the BSP tree algorithm, and even the number
one-way priority relations to be computed is fewer than that in t
pre-processing of the BSP tree algorithm. Hence the dynam
pre-processing has a faster speed than the pre-processing of

Copyright Notice
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.

is
a

s

t
A

s

h

h

e

e

h

th
P
i

n
k
is

h
g

e

P
n
th

n

G

ich
ay

, P
 on
t is
ese
ity.
ich

 a
 G.
rity

ly
f

s is

an
ne P

 or a
Q, if

 be
ane

e
has
 is
BSP tree algorithm. The efficiency of the post-processing
only affected by the number of the output polygons in the feud
priority tree or the BSP tree so our approach has a much high
speed than the BSP tree algorithm in the post-processing work.

FUNDAMENTAL CONCEPTS

If there exits any face(polygon) of an object and you can
reach both sides of this face without penetrating any other face,
this object is "open-volume". If you can just reach at most one
side of each face of an object without penetrating other faces, this
object is "closed-volume". All real world objects are
constructed with closed-volume objects which are the mo
interesting objects in the fields of CAD and CAM. But many
theoretical applications in the areas of Graphics, Mathematics, e
make use of examples which contain open-volume objects.
polygon is a typical example of an open-volume object.

The objects discussed in this paper only consist of polygon
i.e., flat faces, which are either convex or concave. The term
polygon is used to denote the union of the boundary and t
interior of a plane region which is bounded by several successive
line segments [9]. The following concepts are valid for bot
closed-volume and open-volume objects.

[Definition 1] One-way Priority

The "one-way priority" of a polygon P relative to a polygon
Q is represented by the symbol "P -> Q" and is divided into th
following four categories by substituting the x, y, and z
coordinates of all vertices of the polygon P into the plan
equation of the polygon Q:

(1) P is on the front side of Q if at least one vertex of P makes t
plane equation of Q greater than 0 and all other vertices of
make the plane equation of Q not less than 0. This catego
is represented by the symbols "P <| Q" or "Q |> P".

(2) P is on the back side of Q if at least one vertex of P makes
plane equation of Q less than 0 and all other vertices of
make the plane equation of Q not greater than 0. Th
category is represented by the symbols "P >| Q" or "Q |< P".

(3) P is cut by Q if at least one vertex of P makes the pla
equation of Q greater than 0 and at least one vertex of P ma
the plane equation of Q less than 0. This category
represented by the symbol "P \- Q".

(4) P and Q are coplanar if all vertices of P make the plan
equation of Q equal to 0. This category is represented by t
symbol "P -- Q". Coplanar polygons have equal renderin
priority.

The one-way priority is the most important basis in our approach

The "absolute priority" is divided into the "absolute front
priority" and the "absolute back priority" which are defined as th
following:

[Definition 2] Absolute Front Priority

If no other polygons are on the front side of a polygon P,
has the "absolute front priority" to those polygons which are o
the back side of P. Polygons which are coplanar and have
same normal direction with P have the same priority as P. A
these polygons with the absolute front priority have the sam
priority. In Figure 1, polygons 1, 2, 3, 4, and 7 have the sam
priority in which polygons 2 and 3 are coplanar. The arrows i
Figure 1 represent the normal vectors of polygons.

All the polygons with the absolute front priority are put in a
bunch Fj and all other remaining polygons are put in a group
l
er

t

c.

,

e

e
P
ry

e

s

e
es

e
e

.

e
ll
e
e

.

In this paper, the term "bunch" is used to put the polygons wh
have the same priority, but the polygons in the term "group" m
not have the same priority.

Figure 1. Absolute front priority and
 absolute back priority.

1

5 7

6

4

32

10
9

8

[Definition 3] Absolute Back Priority

If no other polygons are on the back side of a polygon P
has the "absolute back priority" to those polygons which are
the front side of P. A polygon has the same priority as P if i
coplanar and has the same normal direction with P. All th
polygons with the absolute back priority have the same prior
In Figure 1, polygons 5, 6, and 8 have the same priority in wh
polygons 6 and 8 are coplanar.

All the polygons with the absolute back priority are put in
bunch Bj and all other remaining polygons are put in a group
The polygons in Fj and the polygons in Bj have the same prio
so they are put in the same level in a "feudal priority tree".

The notion of the separating plane in [10] is extreme
helpful in reducing polygon splittings. From the definition o
linear separability, a separating plane for a group of polygon
easily found from their one-way priority relations.

[Definition 4] Linear Separability

Two sets of points S1 and S2 in E3(3-dimensional Euclide
space) are said to be linearly separable if there exists a pla
such that S1 and S2 lie on the opposite sides of P [9].

[Definition 5] Separating Planes

Polygons P and Q are said to be separated by a plane S
plane S is said to be the separating plane of polygons P and
either (1) or (2) is true.

(1) P <| S and Q >| S
(2) Q <| S and P >| S

The "relative priority" of two groups of polygons is
determined by the "switch plane". If a separating plane can
found as the switch plane, it is much better than a splitting pl
being selected as this switch plane because polygons are divided
into two groups by the separating plane without any splitting.

[Definition 6]
Relative Priority with A Separating Plane

After all polygons with absolute front priority or absolut
back priority have been removed, there is no polygon which
absolute priority. In the remaining polygons, if a polygon S

n
in
th
d
,

e
o
n
p

h
S
n
 b

s
d

te

th

-
s
m
n

e

e
ly
nd
e

o
4)
te

y
ty
to
ge
or
th

k
k
e

 5.

t
t
ft

is
found which can be a separating plane to all other polygo
separate all other polygons except the coplanar polygons of S
groups C and D. If the group C is on the front side of S and
group D is on the back side of S, this case can be represente
the symbols "C <| S |< D" or "D >| S |> C". In Figure 2
(polygons 4 and 5) <| polygon 3 |< (polygons 1 and 2).

Figure 2. Relative priority with
 a separating plane.

2

5

3
1

4

[Definition 7]
Relative Priority with A Splitting Plane

If a separating plane can not be found in the above cas
splitting plane S is selected. From the one-way priority relati
of S, the polygons cut by this splitting plane can be easily fou
and split into smaller polygons. Then all output polygons exce
S and its coplanar polygons are separated into groups C and
If C is on the front side of S and D is on the back side of S, t
case can be represented by the symbols "C <| S |< D" or "D >|
C". In Figure 3, (polygons 1 and 2a) <| polygon 3 |< (polygo
2b, 4, and 5). The polygon 2 is split into polygons 2a and 2b
the splitting plane 3.

Figure 3. Relative priority with
 a splitting plane.

2

5

3
1

4

2a

2b

PROCEDURE

For each polygon, list all vertices in a sequence which make
the first three vertices be in clockwise direction on the outsi
surface in order to match the convention of the left-handed
coordinate system. This is very important for closed-volum
objects because the normal vector of each polygon is set to point
outward for doing the back-face culling work. Then compu
the plane equation of each polygon with the coordinates of the
first three vertices of the polygon and store the coefficients for
plane equation.

The procedure developed in our approach for rendering 3
objects involves a preprocessing phase and a postproces
phase which are described next, starting with closed-volu
objects. In the preprocessing phase, both a static version a
dynamic version are proposed in this paper.

Now, a "feudal priority tree" is to be established step by st
and a simple closed-volume object shown in Figure 4 is used
demonstrate the whole procedure.

The Static Preprocessing Phase
s,
to
e
 by

, a
n
d
t
D.

is
 |>
s
y

e

e

e

D
ing
e

d a

p
to

1. Establishing One-way Priority Tables

1

2

3

4
7

6 5

9

8

11
10

12

Figure 4. A closed-volume object.

For the i-th polygon of a closed-volume object, substitute th
coordinates of all vertices of every other polygon sequential
into the plane equation of the i-th polygon, and then compute a
decide the one-way priority relation of every other polygon to th
i-th polygon. According to Definition 1, the one-way priority
relation of all other polygons to the i-th polygon are divided int
four categories: (1) front side, (2) back side, (3) cutting, and (
coplanar. List every other polygon under its appropria
category in the i-th row in a one-way priority table.

In the i-th row, if there are polygons under the categor
"coplanar", it is not necessary to compute the one-way priori
relation for these coplanar polygons. Just copy the i-th row in
the rows of all these coplanar polygons, and then only exchan
the polygons under categories "front side" and "back side" f
those coplanar polygons with the reverse normal direction wi
the i-th polygon.

P -> Q

P <| Q P >| Q P \- Q P -- Q
Q

1
2,3,4,5,6,7,8,
9,10,11,12

3 5,6,7,12 1,2,10,11 4,8,9

2
1,3,4,5,6,7,8,
9,10,11,12

Table 1. A part of the one-way priority table
 for the object in Figure 4.

4 1,11 5,6,7,8,9,12 2,3,10

2. Adding Absolute Priority Polygons to The Feudal Priority
Tree and Deleting Them from One-way Priority Tables

(1) In the i-th row, if no polygon is under the categories "bac
side" and "cutting", the i-th polygon is an absolute bac
priority polygon and can be added into the bunch Bj on th
right side of the current connecting node as shown in Figure
Then the i-th row is deleted from the one-way priority table.

(2) In the i-th row, if no polygon is under the categories "fron
side" and "cutting", the i-th polygon is an absolute fron
priority polygon and can be added into the bunch Fj on the le
side of the current connecting node. Then the i-th row
deleted from the one-way priority table.

d

e

e
s

a
r

e

o
e a
ons
be
 on
lane
side
 on

 and
 the
to
the
een
ve

ly.
be
ct a

)
ost
ack
nder
s.
the
f as
plit
der
nch

 put
rity
s Gf
 by
(3) After all absolute priority polygons in the above steps (1) an
(2) have been found, delete these polygons from all the row
remaining in the one-way priority table.

(4) Repeat steps (1) through (3) again. If there are polygon
found in step (1), add them into the bunch Bj+1 linked on th
right side of the last bunch Bj. If there are polygons found in
step (2), add them into the bunch Fj+1 linked on the left sid
of the last bunch Fj. If there are no polygons found in step
(1) and (2), stop here and execute the next procedure.

Root

F1

S1

B1

S2

S4 S5

Figure 5. A feudal priority tree.

: connecting nodes

: switch nodes

: polygon bunches

O1

O2

S3

F2

B1 B1

B1 B1

F1 F1

F1F1

F2

B2

B2

The polygons in the bunches Fj+1 and Bj+1 and all the
polygons below Fj+1 and Bj+1 in the feudal priority tree are
surrounded by the polygons in the bunches Fj and Bj such th
this relation is not changed while the viewpoint or the view vecto
is moved. Hence this relation is called the "absolute priority".

After removing absolute front priority polygons 1, 2, 5, 8, 9,
and 10, the one-way priority table of the object in Figure 4
becomes Table 2 in which no absolute priority polygon can b
found.

P -> Q

P <| Q P >| Q P \- Q P -- Q
Q

3 11

3,6,11,12

6,7,124

6

7

11

12

6,7,12

11

11

4,6,7,12

3,7,11

7,12

6

4

3

3,4

4

3

4

Table 2. The one-way priority table for the
 object in Figure 4 after all absolute
 priority polygons are removed.

3. Separating The Remaining Polygons with A Separating
Plane
s

s

t

In the i-th row of the current one-way priority table, if n
polygon is under the category "cutting", the polygon Qi can b
separating plane to all other polygons except those polyg
coplanar with Qi. If more than one separating plane can
found, the separating plane with the most balanced polygons
the front and back sides is selected. Setting this separating p
Sk as a switch node in Figure 5, those polygons on the front
of Sk are put in a group Gf as the left branch, those polygons
the back side of Sk are put in a group Gb as the right branch,
those polygons coplanar with Sk are put in a bunch Ok under
switch node Sk. Revise the current one-way priority table in
two smaller ones for Gf and Gb separately. Because
rendering order of Gf and Gb is determined by the angle betw
the normal vector of Sk and the view vector it is called "relati
priority".

Then go back to do procedure 2 for Gf and Gb individual
If there is no polygon by which all other polygons can
separated into two groups, do the next procedure to sele
splitting plane.

4. Splitting The Remaining Polygons with A Splitting Plane

In the current one-way priority table, a polygon Qi with (1
the least polygons under the category "cutting" and (2) the m
balanced polygons under the categories "front side" and "b
side" is selected as the splitting plane Sk. Those polygons u
the category "cutting" are split by Sk into smaller polygon
Those split smaller polygons on the front side of Sk and
polygons under the category "front side" are put in a group G
the left branch of a switch node Sk in Figure 5. The other s
smaller polygons on the back side of Sk and the polygons un
the category "back side" are put in a group Gb as the right bra
of the switch node Sk. Those polygons coplanar with Sk are
in a bunch Ok under the node Sk. Two smaller one-way prio
tables are modified from the current one based on the group
and Gb. The rendering order of Gf and Gb is also determined
the switch plane Sk as in the above procedure.

In
e
s
itc

ity
th
ui
th

n
la
n
an
ou
ar
nt
 F1
 its
ity
lute
 a
 3.

in

en
en

g",

g",

3.
he
y
 do

rst
y
 do

rity

the
tatic
 of
he
e
 is
sing
r of
 is

the

.

Start

Establish a one-
way priority table

If absolute back
priority polygons exist

in the current table

Put these polygons
into a bunch Bj on
the right side of the
connecting node

If absolute front
priority polygons exist

in the current table

If a separating
plane Sk exists in
the current table

Delete
absolute
priority
polygons
and their
rows
from the
current
one-way
priority
table

If the current
group is empty

End

Select a splitting
plane Sk from the
current table and split
all cutting polygons

Set Sk as the switch
node under the
current connecting
node and put its
coplanar faces into
the bunch Ok under
Sk, then divide the
current polygons into
groups Gf and Gb by
Sk and link Gf to the
left side and Gb to the
right side of Sk

Revise
one-way
priority
tables for
the groups
Gf and Gb

no

yes

yes

yes

no

yes

no

If absolute priority
polygons are found

yes

Figure 6. The procedure of the static preprocessing.

j = j + 1

j = 1

Put these polygons
into a bunch Fj on
the left side of the
connecting node

no

no

If the current
group is the last

yes

Go to the
next group

no

Go to the
group of
Gf or Gb

Return to do procedure 2 for Gf and Gb individually.
procedure 2, after all absolute priority polygons were remov
from Gf and Gb, the separating planes or splitting planes cho
from the remaining polygons in Gf and Gb are set as the sw
nodes Sk+1 and Sk+2 separately in the feudal priority tree
Figure 5.

The whole procedure for the static preprocessing phase
our approach is illustrated as shown in Figure 6.

In the "static preprocessing phase", all absolute prior
polygons and all separating planes are searched for after
corresponding one-way priority tables have been completely b
But the "dynamic preprocessing phase" is developed to find
absolute priority polygons and the separating planes after each
row of the one-way priority tables has been just set up.

In Table 2, there is no separating plane that can be fou
Polygons 3, 4, and 12 are good candidates as the splitting p
Polygon 3 is selected to be the splitting plane and split polygo
into polygons 13 and 14 as in Figure 7. Polygons 6, 7, 12,
14 are in the group Gf and polygons 11 and 13 are in the gr
Gb. The two one-way priority tables of these two groups
shown in Table 3. In the group Gf of Table 3, two absolute fro
priority polygons 6 and 14 can be removed and put in a bunch
under the left connecting node of the switch node 3, and then
one-way priority table becomes Table 4. Absolute back prior
polygons 7 and 12 in Table 4 are put in a bunch B2. Abso
back priority polygons 11 and 13 in the group Gb are put in
bunch B1 under the right connecting node of the switch node
d
en
h

in

of

eir
lt.
e

d.
ne.
 4
d
p

e

The feudal priority tree for the object in Figure 7 is shown
Figure 8.

The Dynamic Preprocessing Phase

1. Establishing One-way Priority Tables and Searching
Absolute Priority Polygons or Separating Planes

As the one-way priority relation of the polygon Qi has be
computed, go through the following criteria step by step and th
execute the appropriate procedure:

(1) If no polygon is under the categories "back side" and "cuttin
do procedures 2(1) and 2(3).

(2) If no polygon is under the categories "front side" and "cuttin
do procedures 2(2) and 2(3).

(3) If no polygon is under the category "cutting", do procedure
(4) If Qi is not the last polygon in the current group, go to t

next polygon Qi in this group. If the one-way priorit
relation of Qi has not been computed, compute it. Then
procedure 1 for Qi.

(5) If the current group is not the last group, go to the fi
polygon Qi of the next group. If the one-way priorit
relation of Qi has not been computed, compute it. Then
procedure 1 for Qi.

(6) Start to do the static preprocessing for all the one-way prio
tables in the feudal priority tree.

While doing the static preprocessing in the latter part of
dynamic preprocessing phase, do procedure 2 of the s
preprocessing directly because the one-way priority relations
all the polygons have been built. In order to prevent t
building of the feudal priority tree from being affected by th
order of the input polygons in the data file, the input polygon
randomly selected in procedure 1 of the dynamic preproces
phase. In contrast with the dynamic preprocessing, the orde
the input polygons in the data file in the static preprocessing
not important because the feudal priority tree is built after
whole one-way priority table has been built.

Figure 7. The closed-volume object in Figure 4 after splitting

2

5

913

14

8

6

3

12 7

10
11

1

to
h
e
n
s

to
id

to
id
a
re
g

ch
he

i
w
ws
ty

ar
 be

 to
e

 is
n.
he
y
e
 1
ill

er
Set
ure
nd
 as
t in
 the
r

 or
r
n a
e
a

er
 be
ic
 in

g
ed
ure
by
P -> Q

P <| Q P >| Q
Q

6

6,7,12

7,12,14

7 6,12

7 6

14

14

P <| Q
Q

11

13

13

11

P \- Q

12

14

P -> Q

Table 3. Two one-way priority tables split
 from Table 2 by polygon 3.

P -> Q

P <| Q P >| Q
Q

7

7

P \- Q

12

12

Table 4. The one-way priority table for the left one
 in Table 3 after absolute front priority
 polygons 6 and 14 are removed.

Root

1,2,5,8,9,10

3

6,14 11,13

7,12

Figure 8. The feudal priority tree built by the static
 preprocessing for the object in Figure 7.

B1

F2

F1

B2

F1

F1

B1

B1

2. Adding Absolute Priority Polygons to The Feudal Priority
Tree and Deleting Them from One-way Priority Tables

(1) Qi which is an absolute back priority polygon is added in
the bunch Bj+1 connected to the last bunch Bj on the rig
side of the current connecting node in Figure 5. Th
coplanar polygons of Qi having the same normal directio
with Qi are also put into Bj+1. The other coplanar polygon
of Qi having the reverse normal direction with Qi are put in
the bunch Fj+1 connected to the last bunch Fj on the left s
of the current connecting node.

(2) Qi which is an absolute front priority polygon is added in
the bunch Fj+1 connected to the last bunch Fj on the left s
of the current connecting node in Figure 5. The coplan
polygons of Qi having the same normal direction with Qi a
also put into Fj+1. The other coplanar polygons of Qi havin
the reverse normal direction with Qi are put into the bun
Bj+1 connected to the last bunch Bj on the right side of t
current connecting node.

(3) The row of Qi is deleted from the one-way priority table. Q
and its coplanar polygons are removed from the previous ro
of the one-way priority table. Then search the previous ro
of the current table with procedure 1 to find if absolute priori
polygons or separating planes exist.
t

e

e
r

s

The following polygons in this group are not necessary in
computing the one-way priority relations to Qi and its coplan
polygons so the one-way priority relations to be computed can
reduced.

A random order 2, 8, 7, 11, 1, 5, 6, 3, 10, 4, 12, 9 is used
select the input polygons of the object in Figure 4. After th
one-way priority row of polygon 2 has been computed, this row
removed for polygon 2 as an absolute front priority polygo
Then the absolute front priority polygon 8 is also removed. T
polygons 7 and 11 are not necessary to compute the one-wa
priority relations to the polygons 2 and 8 in Table 5. Th
polygons 2 and 8 also do not appear in the row of polygon
which is found to be an absolute front priority polygon and w
be removed from Table 5.

Table 5. Computing the one-way priority relation of
 polygon 1 of the object in Figure 4 after
 absolute priority polygons 2 and 8 are removed.

P -> Q

P <| Q P >| Q P \- Q P -- Q
Q

1 3,4,5,6,7,9,
10,11,12

7 3,6,11,12 9 4,5,10

4,5,6,7,9,12 3,1011

3. Separating The Remaining Polygons with A Separating
Plane

The polygon Qi can be a separating plane Sk to all oth
polygons in the current group except its coplanar polygons.
Sk as the switch node under the current connecting node in Fig
5 and put its coplanar polygons into the bunch Ok under Sk, a
then the polygons on the front side of Sk are put in a group Gf
the left branch and the polygons on the back side of Sk are pu
a group Gb as the right branch of the switch node Sk. Revise
current one-way priority table into two one-way priority tables fo
Gf and Gb. Then search the previous rows of the group Gf
Gb with procedure 1 to find if absolute priority polygons o
separating planes exist. While searching the previous rows i
table, only those Qi in which there is no polygon under th
category "cutting" can be an absolute priority polygon or
separating plane.

The following polygons in one group are not necessary in
computing the one-way priority relations to the polygons in oth
groups so the one-way priority relations to be computed can
much reduced. The whole procedure for the dynam
preprocessing phase of our approach is illustrated as shown
Figure 9.

The feudal priority tree built by the dynamic preprocessin
for the object in Figure 4 with the input polygons being select
in the order 2, 8, 7, 11, 1, 5, 6, 3, 10, 4, 12, 9 is shown in Fig
10. The part below the switch node of the polygon 3 is built
the static preprocessing.

d

er
he
e

d

-

-

e

o

,

r
re
t
d

Start

Compute the
one-way priority
relation of the
face Qi

If Qi is an
absolute back
priority face

Link Qi and the coplanar
faces with the same normal
direction to the right branch,
and the other coplanar faces
to the left branch of the
current connecting node

If Qi is a
separating plane

of the current
group

Delete
Qi and
all its
coplanar
faces
from the
current
one-way
priority
table

Set Qi as the switch node Sk
under the current connecting
node and put its coplanar
faces into the bunch Ok
under Sk, then divide the
current faces into groups Gf
and Gb by Qi and link Gf to
the left side and Gb to the
right side of Sk

Revise
one-way
priority
tables
for Gf
and Gb

no

yes

yes

yes

no

no

If Qi is an
absolute front
priority face

Link Qi and the coplanar
faces with the same normal
direction to the left branch,
and the other coplanar faces
to the right branch of the
current connecting node

Do the static preprocessing for
all the one-way priority tables
in the feudal priority tree

End

yes

Go to the first face Qi of the current group

Go to the
group of
Gf or Gb

If Qi is the last face
in the current group

If this group is
the last group

next face Qi

no

no

yes

Go to the first face
Qi of the next group

If the one-way
priority of Qi has
been computed

no

Go to the first
face Qi of the
current group

Figure 9. The procedure of the dynamic preprocessing.

yes

Root

2

3

F1

8
F2

1
F3

5
F4

9
F6

10
F5

B1

B2

B4

B5

B3

B6

6,14 11,13

7,12

B1

F2

F1

B2

F1 B1

Figure 10. A feudal priority tree built by the dynamic
 preprocessing for the object in Figure 7.

The Postprocessing Phase

First, the "forward face" and the "backward face" are define
as the following:

(1) A forward face is a polygon whose normal vector forming an

angle with the view vector is not greater than 90o.
(2) A backward face is a polygon whose normal vector forming

an angle with the view vector is greater than 90o.

Instead of the viewpoint, the view vector is used in this pap
to compute and decide if one face is forward or backward. T
operations to compute the dot product of the view vector with th
normal vector of one face involves 3 multiplications and 2
additions, but the operations to substitute the viewpoint into the
plane equation of one face includes 3 multiplications and 3
additions. The forward and backward directions are also define
consistently with the direction of the view vector.

For a new view vector, all forward faces in the bunch Fj in
Figure 5 are put into the sub-bunch Fjf and all backward faces are
put into the sub-bunch Fjb as shown in Figure 11. Similarly,
each bunch Bj is divided into the sub-bunches Bjf and Bjb for
forward faces and backward faces respectively. For closed
volume objects, all the forward faces are fully obstructed by the
backward faces and are invisible so all the faces in the sub
bunches, Fjf and Bjf, can be discarded before drawing. This
procedure is known as "back-face culling".

Root

F1f

S1

F1b B1f
B1b

S2

S3 S4

O1

: connecting nodes

: switch nodes

: polygon bunches

O2

Figure 11. A feudal priority tree for the postprocessing.

B2f
B2bF2f

F2b

B1f
B1bF1f

F1bB1f
B1b

B2f
B2b

F1f
F1b

F2f
F2b

B1f
B1b

B1f
B1bF1f

F1b
F1f
F1b

Because the faces in Fj and Bj have the same priority, th
feudal priority tree is searched level by level. The searching
procedure starts from the root which is the first connecting node
in the feudal priority tree:

(1) From the head of this connecting node, put the faces of Bjb
into the next class element of the rendering priority linked list,
and then put the faces of B(j+1)b into the next class element t
the previous one, until the tail of this connecting node is
reached. (a) Under this connecting node, if a switch node Sk
exists and Sk is a forward face, do the connecting node which
is on the front side of Sk by procedure (1). (b) Under this
connecting node, if a switch node Sk exists and Sk is a
backward face, do the connecting node which is on the back
side of Sk by procedure (1). (c) If no switch node is under
this connecting node, call procedure (2).

(2) From the tail of this connecting node, put the faces of Fjb into
the next class element of the priority list, and then put the
faces of F(j-1)b into the next class element to the previous one
until the head of this connecting node is reached. (a) If a
switch node Sk is above this connecting node, and the othe
connecting node under Sk has not been done with procedu
(1), put the face Sk and its coplanar faces in Ok into the nex
class, and then go to the other connecting node under Sk an
do procedure (1). (b) If a switch node Sk is above this

 h
od
his

ty.
, th
the
n

he
re
tic
th

mi
an
is

in
me
re
ts

so
he
for

ing
lly

 on
d-

re
connecting node, and the other connecting node under Sk
been done with procedure (1), go to the upper connecting n
and do procedure (2). (c) If no switch node is above t
connecting node, the postprocessing has been finished.

The faces(or polygons) within a "class" element in the
rendering priority linked list have the same rendering priori
Therefore, no matter what the drawing order for these faces is
same picture is obtained . The whole procedure for
postprocessing phase of our approach is illustrated as show
Figure 12.

Start from the root

A connecting
node and j = 1

If Bjb is the
lowest one

Put all polygons
of Bjb into the
next class of the
priority list

If a switch node
Sk under this

connecting node

no

yes

yes

no

j = j + 1

A switch node Sk
Put all polygons of Fjb into the
next class of the priority list

If j = 1 j = j - 1
no

yes

If a switch node
Sk above this

connecting node

A connecting node

yes

no
End

Figure 12. The procedure of the postprocessing
 for closed-volume objects.

If this connecting
node is on the front

side of the forward Sk,
or on the back side of

the backward Sk

yes

Put Sk and its coplanar polygons in Ok
into the next class of the priority list and
go to the other connecting node under Sk

Go to the connecting
node on the front
side of the forward
Sk, or go to the one
on the back side of
the backward Sk

no

Go to the upper connecting node

13 3 7 6,14 1,2,5

Figure 13. The priority list searched from the
 feudal priority tree in Figure 8.

Figure 14. The priority list searched from the
 feudal priority tree in Figure 10.

13 3 7 6,14 5 1 2

For the object in Figure 4, the priority lists searched from t
feudal priority trees in the Figures 8 and 10 are shown in Figu
13 and 14 respectively. The priority list obtained from the sta
preprocessing is always shorter than or at most equal to
obtained from the dynamic preprocessing.

The Procedure for Open-Volume Objects

The procedure of the static preprocessing or the dyna
preprocessing is the same for both closed-volume objects
open-volume objects because the feudal priority tree
as
e

e

in

s

at

c
d

constructed for both forward faces and backward faces. With
the postprocessing phase, the forward faces of closed-volu
objects are invisible to the viewer so the faces of Fjf and Bjf a
discarded in Figure 12. But all the faces of open-volume objec
might be visible to the viewer, forward faces can not be culled
the faces of Fjf must be put together with the faces of Bjb into t
same class element in the priority list. The class of the faces
Fjb also includes the faces of Bjf.

Figure 15. A gray shading display of the base of a
machinist‘s vise which is a closed-volume object.

Figure 16. A color display of a house which is
a closed-volume object.

IMPLEMENTATION

The static preprocessing and the dynamic preprocess
respectively with the postprocessing have been successfu
implemented as two programs in the C language and tested
personal computers to do real-time rendering for both close
volume and open-volume 3-D objects.

Two examples are displayed in Figures 15 and 16 which a
the orthographic projection.

a
d

a
th
o
ti

 a

fo
-D
h

nd
ty

ree
 the

ve
 at
e
y
his
des.
ns
e
 a
ed
t
te
e
ng
m

od.
ree

ay
.
i
y
e
ot
e

to
up
the
ty
ch
an

g
n
3,
lit
e

ns

n
d
m.
sing
-
ing
ing
the
The data of polygons and running time in Tables 6 and 7
the average values on executing 20 times the correspon
programs for the closed-volume objects in the Figures 15 and
respectively. A polygon is assumed to be split into just tw
smaller polygons so the difference between output polygons
input polygons is the number of splittings. The numbers in
row of "One-way priority relations" are the times of the executi
to substitute all the vertices of a polygon into the plane equa
of another polygon.

Table 6. Comparing our approach with the BSP tree
 algorithm for the example in Figure 15.

63162

FP alg. with
static pre-
processing

FP alg. with
dynamic pre-
processing

BSP tree
algorithm

324

35

14234 28636

71

324 579

44170
Switch
nodes

One-way
priority
relations
Connecting
nodes

Output
polygons

304 input
polygons

Splittings 20 20 275

106

Time of pre-
processing (ms)

Time of post-
processing (ms)

444

0.603

113

0.767

125

7.55

Table 7. Comparing our approach with the BSP tree
 algorithm for the example in Figure 16.

141942

FP alg. with
static pre-
processing

FP alg. with
dynamic pre-
processing

BSP tree
algorithm

741

55

45744 84596

111

741 1290

1013135
Switch
nodes

One-way
priority
relations
Connecting
nodes

Output
polygons

736 input
polygons

Splittings 5 5 554

221

Time of pre-
processing (ms)

Time of post-
processing (ms)

1430

1.23

406

1.37

356

17.8

All the nodes in a BSP tree are switch nodes because the
searching order depends on the dot product of the view vector
the normal vector of the faces in the nodes.

EVALUATION AND DISCUSSION

The BSP tree algorithm is an extremely efficient method
calculating the visibility relationships among a static group of 3
polygons as seen from a frequently moving viewpoint [4]. T
re
ing
16
o
nd
e

n
on

nd

r

e

most time-consuming tasks in the computer for our approach a
the BSP tree algorithm are (1) computing the one-way priori
relation between each pair of polygons, and (2) splitting polygons.
Hence our approach is proposed to compare with the BSP t
algorithm on these two tasks in the preprocessing phase and
postprocessing phase.

The Preprocessing Phase

1. Computing One-way Priority Relations

Usually, establishing a BSP tree with fewer nodes can sa
time in preprocessing calculation. While establishing this tree
each node, in order to select a polygon as the splitting plan
which intersects the fewest polygons n(n-1) one-way priorit
relations between any two polygons must be computed, but t
procedure can not always lead to a BSP tree with the fewest no
Therefore, it is necessary to compute one-way priority relatio
much more than N(N-1) to build a BSP tree, where N is th
number of input polygons and n is the number of polygons in
sub-space in the BSP tree. If the splitting plane is select
randomly, it may significantly increase splittings and outpu
polygons. An alternative method is to select five candida
polygons randomly in each sub-space, and then one of the fiv
candidates with the fewest splittings is chosen as the splitti
plane [6, 14]. In this paper, the data for the BSP tree algorith
in the Tables 6 and 7 are based on this alternative meth
Consequently, the procedure for establishing an optimal BSP t
is uncertain, difficult, and complicated.

In the static preprocessing of our approach, the one-w
priority table is established on N(N-1) one-way priority relations
After computing the one-way priority relation of the polygon Q
in the dynamic preprocessing, if Qi is an absolute priorit
polygon, it is removed before the one-way priority relation of th
next input polygon is computed so the following polygons are n
necessary in computing one-way priority relations to thes
removed polygons. As the current polygons are divided in
two groups with a separating plane Qi, the polygons in one gro
are not necessary to compute the one-way priority relations to
polygons in the other group. Therefore, the one-way priori
relations to be computed in the dynamic preprocessing are mu
fewer than that in the static preprocessing and even fewer th
that in the preprocessing of the BSP tree algorithm.

2. Splitting Polygons

In this paper, a polygon is assumed to be split by a splittin
plane into two smaller polygons. In fact, a concave polygo
may be split into more than two simply-connected polygons [1
3]. To separate simply-connected polygons from the sp
polygons is complicated and time-consuming work. Henc
more polygons to be split will definitely lower the efficiency in
the preprocessing and will produce much more output polygo
to decrease the efficiency in the postprocessing.

The dynamic preprocessing has much fewer polygo
splittings and fewer one-way priority relations to be compute
than those in the preprocessing of the BSP tree algorith
Hence the dynamic preprocessing is faster than the preproces
of the BSP tree algorithm. If the separation for simply
connected polygons is also involved, the dynamic preprocess
is definitely the best one among these three preprocess
methods. Because the static preprocessing has to compute
fixed N(N-1) one-way priority relations, it is slower than the
dynamic preprocessing.

The Postprocessing Phase

he
rk
 o

in
t

th
tp
he
th
e
on
u

he
w
th

re

ut
e
la
e
a
in
 i
 t
 t
, 2
a

 th
ce

 w
an

a
in
n
ti
g
ic
 t
t

m
 i
th
th
an

re

he
 t
ri
 t
 i

ns
in
st.

e
ons
al

g
ns
e

re
at

l
nt
for

,

e

B,
In our approach and the BSP tree algorithm, t
preprocessing phase which does the most time-consuming wo
just run one time for an object to establish a feudal priority tree
a BSP tree respectively. For any new view vector or viewpo
only the postprocessing phase, which is much faster than
preprocessing phase, is executed again.

In either the feudal priority tree or the BSP tree for bo
closed-volume and open-volume objects, almost each ou
polygon has to be decided if it is forward or backward in t
postprocessing so the inner product of its normal vector with
view vector must be computed. This is the most tim
consuming work in the postprocessing so more output polyg
will slow down the efficiency of the postprocessing. The outp
polygons for an object in a feudal priority tree built by either t
static preprocessing or the dynamic preprocessing is much fe
than that in a BSP tree so the postprocessing efficiency of
feudal priority algorithm is greatly better than that of the BSP t
algorithm.

CONCLUSIONS

Our approach introduces a new concept of "absol
priority" to remove several outward polygons by which the oth
polygons are surrounded before searching for a separating p
in the current polygon group so the possibility of finding th
separating plane is highly enhanced. Hence the splittings
greatly reduced. This is the important concept of "separat
before splitting" because if there are more splittings, then it
necessary to spend much more time in preprocessing and
produces much more output polygons which greatly decrease
efficiency both in the preprocessing and the postprocessing [1
Therefore, if separating is possible, to separate polygons is alw
better than to split polygons. If there are several planes with
least cutting polygons, select the one with the most balan
polygons on its front side and back side as the splitting plane.

The approach proposed in this paper has been compared
the well known BSP tree algorithm in both the preprocessing
the postprocessing:

(1) In the dynamic preprocessing, an absolute priority polygon
removed at once as it is found and the current polygons
immediately separated into two groups while a separat
plane is searched for; therefore, the one-way priority relatio
to be computed are much fewer than that in the sta
preprocessing and even fewer than that in the preprocessin
the BSP tree algorithm. The efficiency of the dynam
preprocessing is better than that of the preprocessing of
BSP tree algorithm. If all split polygons are separated in
simply-connected polygons, the dynamic preprocessing
much faster than the preprocessing of the BSP tree algorith

(2) Polygon splittings either in the dynamic preprocessing or
the static preprocessing are much fewer than that in
preprocessing of the BSP tree algorithm. Consequently,
output polygons in the feudal priority tree is much fewer th
that in the BSP tree so the efficiency of the postprocessing
our approach is much better than that of the BSP t
algorithm.

The dynamic preprocessing is very efficient in both t
preprocessing and the postprocessing. One drawback of
dynamic preprocessing is that its feudal priority tree is not as b
and uncomplicated as that built by the static preprocessing so
rendering priority list obtained by the dynamic preprocessing
longer than that obtained by the static preprocessing.

A topological property in our approach is that the polygo
in the two bunches with the same level linked to a connect
node have the equal priority while searching the priority li
 is
r

t,
he

ut

e
-
s

t

er
e

e

e
r
ne

re
g
s
his
he
].
ys
e
d

ith
d

is
re
g
s
c
 of

he
o
is
.
n
e
e

of
e

he
ef
he
s

g

Among the polygons in the same class of a priority list, no on
can be obstructed by the other polygons; hence these polyg
have the same rendering priority that is another topologic
property in our approach.

Our approach keeps most output polygons without splittin
so this maintains their completeness. But most input polygo
are split by the BSP tree algorithm into smaller polygons. Th
information of the input polygons in our approach is kept mo
complete than that in the BSP tree algorithm so this is a gre
advantage for our approach in the CAM application.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the Nationa
Science Council of The Republic of China under the gra
NSC82-0115-E-002-396, and specially thank Jenn-Tsuen Wu
his help in creating the data file of the example house.

REFERENCES

[1] CHEN, HAN-MING. A Real-Time Rendering System for 3-D
Objects in Computer-Aided Design and Manufacturing,
Ph.D. Dissertation, University of California at Berkeley
May 1991.

[2] CHEN, HAN-MING, and ADIGA, S. An Ingenious Algorithm
for Hidden-Surface Removal. The Proceedings of The
Second International Conference on CAD & CG. September
1991, Hangzhou, China, pp.159-164.

[3] CHEN, HAN-MING, and JIANG, L. S. Partitioning A Concave
Polygon into Simply-Connected Polygons. The Proceedings
of The Twenty-third Midwestern Mechanics Conferenc,
October 1993, Lincoln, U.S.A., pp.75-77.

[4] FOLEY, J. D., VAN DAM, A., FEINER, S. K., and HUGHES, J. F.
Computer Graphics: Principles and Practice, second ed.
Addison-Wesley, Reading, MA, 1990.

[5] FUCHS, H., KEDEM, Z. M., and NAYLOR, B. F. On Visible
Surface Generation by A Priori Tree Structures. Computer
Graphics, Vol.14(3), July 1980, pp.124-133.

[6] FUCHS, H., ABRAM, G. D., and GRANT, E. D. Near Real-Time
Shaded Display of Rigid Objects. Computer Graphics,
Vol.17(3), July 1983, pp.65-72.

[7] NAYLOR, B. F. A Priori Based Techniques for Determining
Visibility Priority for 3-D Scenes, Ph.D. Dissertation,
University of Texas at Dallas, May 1981.

[8] NEWELL, M. E., NEWELL, R. G., and SANCHA, T. L. A
Solution to the Hidden Surface Problem. The Proceedings of
the ACM National Conference, 1972, pp.443-450.

[9] PREPARATA, F. P., and SHAMOS, M. I. Computational
Geometry: An Introduction, Springer-Verlag, New York,
1985.

[10] SCHUMACKER, R. A., BRAND, B., GILLILAND , M. G., and
SHARP, W. H. Study for Applying Computer-Generated
Images to Visual Simulation. Technical Report AFHRL-TR-
69-14, NTIS AD700375fR, U.S. Air Force Human
Resources Lab., Air Force Systems Command, Brooks AF
TX, September 1969.

[11] SUTHERLAND, I. E., SPROULL, R. F., and SCHUMACKER R. A.
Sorting and the Hidden-Surface Problem. The Proceedings
of the National Computer Conference, 1973, pp.685-693.

[12] SUTHERLAND, I. E., SPROULL, R. F., and SCHUMACKER, R. A.
A Characterization of Ten Hidden-Surface Algorithms. ACM
Computing Surveys, Vol.6(1), March 1974, pp.1-55.

[13] SUTHERLAND, I. E., and HODGMAN, G. W. Reentrant Polygon
Clipping. Communications of the ACM, Vol.17(1), January
1974, pp.32-42.

e

[14] THIBAULT , W. C., and NAYLOR, B. F. Set Operations on
Polyhedra Using Binary Space Partitioning Trees. Computer
Graphics, Vol.21(4), July 1987, pp.153-162.

[15] YAO, F. F. On the Priority Approach to Hidden-Surface
Algorithms. The Proceedings of the IEEE Symposium on th
Foundations of Computer Science, 21st Annual, 1980,
pp.301-307.

